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Abstract. Alexandrov’s Theorem states that every metric with the
global topology and local geometry required of a convex polyhedron is
in fact the intrinsic metric of some convex polyhedron. Recent work by
Bobenko and Izmestiev describes a differential equation whose solution
is the polyhedron corresponding to a given metric. We describe an al-
gorithm based on this differential equation to compute the polyhedron
to arbitrary precision given the metric, and prove a pseudopolynomial
bound on its running time.

1 Introduction

Consider the intrinsic metric induced on the surface M of a convex body in R3.
Clearly M under this metric is homeomorphic to a sphere, and locally convex in
the sense that a circle of radius r has circumference at most 2πr.

In 1949, Alexandrov and Pogorelov [1] proved that these two necessary con-
ditions are actually sufficient: every metric space M that is homeomorphic to a
2-sphere and locally convex can be embedded as the surface of a convex body
in R3. Because Alexandrov and Pogorelov’s proof is not constructive, their work
opened the question of how to produce the embedding given a concrete M .

To enable computation we require that M be a polyhedral metric space,
locally isometric to R2 at all but n points (vertices). Now the theorem is that
every polyhedral metric, a complex of triangles with the topology of a sphere
and positive curvature at each vertex, can be embedded as an actual convex
polyhedron in R3. This case of the Alexandrov-Pogorelov theorem was proven
by Alexandrov in 1941 [1], also nonconstructively. Further, Cauchy showed in
1813 [3] that such an embedding must be unique. All the essential geometry
of the general case is preserved in the polyhedral case, because every metric
satisfying the general hypothesis can be polyhedrally approximated.

Algorithms for Alexandrov’s Theorem are motivated by the problem of fold-
ing a polygon of paper into precisely the surface of a convex polyhedron. There
? Partially supported by an NDSEG Fellowship.

?? Partially supported by an NSF Graduate Research Fellowship.
? ? ? Partially supported by NSF CAREER award CCF-0347776.



are efficient algorithms to find one or all gluings of a given polygon’s boundary
to itself so that the resulting metric satisfies Alexandrov’s conditions [4, 9]. But
this work leaves open how to find the actual 3D polyhedra that can be folded
from the polygon of paper.

In 1996, Sabitov [12, 11, 13, 5] showed how to enumerate all the isometric
maps M → R3 for a polyhedral metric M , so that one could carry out this
enumeration and identify the one map that gives a convex polyhedron. In 2005,
Fedorchuk and Pak [6] showed an exponential upper bound on the number of
such maps. An exponential lower bound is easy to find, so this algorithm takes
time exponential in n and is therefore unsatisfactory.

Recent work by Bobenko and Izmestiev [2] produced a new proof of Alexan-
drov’s Theorem, describing a certain ordinary differential equation (ODE) and
initial conditions whose solution contains sufficient information to construct the
embedding by elementary geometry. This work was accompanied by a computer
implementation of the ODE [14], which empirically produces accurate approxi-
mations of embeddings of metrics on which it is tested.

In this work, we describe an algorithm based on the Bobenko-Izmestiev ODE,
and prove a pseudopolynomial bound on its running time. Specifically, call an
embedding of M ε-accurate if the metric is distorted by at most a factor 1 + ε,
and ε-convex if each dihedral angle is at most π + ε. For concreteness, M may
be represented by a list of triangles with side lengths and the names of adjacent
triangles. Then we show the following theorem:

Theorem 1. Given a polyhedral metric M with n vertices, ratio S between
the largest and smallest distance between vertices, and defect (discrete Gaus-
sian curvature) between ε1 and 2π − ε8 at each vertex, an ε6-accurate ε9-
convex embedding of M can be found in time O

(
n913/2S831/(ε121ε445

1 ε616
8 )

)
where

ε = min(ε6/nS, ε9ε
2
1/nS6).

The exponents in the time bound of Theorem 1 are remarkably large. Thank-
fully, no evidence suggests our algorithm actually takes as long to run as the
bound allows. On the contrary, our analysis relies on bounding approximately a
dozen geometric quantities, and to keep the analysis tractable we use the simplest
bound whenever available. The algorithm’s actual performance is governed by
the actual values of these quantities, and therefore by whatever sharper bounds
could be proven by a stingier analysis.

To describe our approach, consider an embedding of the metric M as a convex
polyhedron in R3, and choose an arbitrary origin O in the surface’s interior. Then
it is not hard to see that the n distances ri = Ovi from the origin to the vertices
vi, together with M and the combinatorial data describing which polygons on M
are faces of the polyhedron, suffice to reconstruct the embedding: the tetrahedron
formed by O and each triangle is rigid in R3, and we have no choice in how to
glue them to each other. In Lemma 1 below, we show that in fact the radii alone
suffice to reconstruct the embedding, to do so efficiently, and to do so even with
radii of finite precision.



Therefore in order to compute the unique embedding of M that Alexandrov’s
Theorem guarantees exists, we compute a set of radii r = {ri}i and derive a
triangulation T . The exact radii satisfy three conditions:

1. the radii r determine nondegenerate tetrahedra from O to each face of T ;
2. with these tetrahedra, the dihedral angles at each exterior edge total at most

π; and
3. with these tetrahedra, the dihedral angles about each radius sum to 2π.

In our computation, we begin with a set of large initial radii ri = R satisfying
Conditions 1 and 2, and write κ = {κi}i for the differences by which Condition 3
fails about each radius. We then iteratively adjust the radii to bring κ near
zero and satisfy Condition 3 approximately, maintaining Conditions 1 and 2
throughout.

The computation takes the following form. We describe the Jacobian
(

∂κi

∂rj

)
ij

,

showing that it can be efficiently computed and that its inverse is pseudopoly-
nomially bounded. We show further that the Hessian

(
∂κi

∂rj∂rk

)
ijk

is also pseu-

dopolynomially bounded. It follows that a change in r in the direction of smaller
κ as described by the Jacobian, with some step size only pseudopolynomially
small, makes progress in reducing |κ|. The step size can be chosen online by
doubling and halving, so it follows that we can take steps of the appropriate
size, pseudopolynomial in number, and obtain an r that zeroes κ to the desired
precision in pseudopolynomial total time. Theorem 1 follows.

The construction of [2] is an ODE in the same n variables ri, with a similar
starting point and with the derivative of r driven similarly by a desired path for
κ. Their proof differs in that it need only show existence, not a bound, for the
Jacobian’s inverse, in order to invoke the inverse function theorem. Similarly,
while we must show a pseudopolynomial lower bound (Lemma 11) on the alti-
tudes of the tetrahedra during our computation, the prior work shows only that
these altitudes remain positive. In general our computation requires that the
known open conditions—this quantity is positive, that map is nondegenerate—
be replaced by stronger compact conditions—this quantity is lower-bounded,
that map’s inverse is bounded. We model our proofs of these strengthenings on
the proofs in [2] of the simpler open conditions, and we directly employ several
other results from that paper where possible.

The remainder of this paper supplies the details of the proof of Theorem 1.
We give background in Section 2, and detail the main argument in Section 3.
We bound the Jacobian in Section 4 and the Hessian in Section 5. Finally, some
lemmas are deferred to Section 6 for clarity.

2 Background and Notation

In this section we define our major geometric objects and give the basic facts
about them. We also define some parameters describing our central object that
we will need to keep bounded throughout the computation.



2.1 Geometric notions

Central to our argument are two dual classes of geometric structures introduced
by Bobenko and Izmestiev in [2] under the names of “generalized convex poly-
tope” and “generalized convex polyhedron”. Because in other usages the dis-
tinction between “polyhedron” and “polytope” is that a polyhedron is a three-
dimensional polytope, and because both of these objects are three-dimensional,
we will refer to these objects as “generalized convex polyhedra” and “generalized
convex dual polyhedra” respectively to avoid confusion.

First, we define the objects that our main theorem is about.

Definition 1. A metric M homeomorphic to the sphere is a polyhedral metric
if each x ∈ M has an open neighborhood isometric either to a subset of R2 or
to a cone of angle less than 2π with x mapped to the apex, and if only finitely
many x, called the vertices V (M) = {vi}i of M , fall into the latter case.

The defect δi at a vertex vi ∈ V (M) is the difference between 2π and the
total angle at the vertex, which is positive by the definition of a vertex.

An embedding of M is a piecewise linear map f : M → R3. An embedding f
is ε-accurate if it distorts the metric M by at most 1 + ε, and ε-convex if f(M)
is a polyhedron and each dihedral angle in f(M) is at most π + ε.

Definition 2. In a tetrahedron ABCD, write ∠CABD for the dihedral angle
along edge AB.

Definition 3. A triangulation of a polyhedral metric M is a decomposition into
Euclidean triangles whose vertex set is V (M). Its vertices are denoted by V (T ) =
V (M), its edges by E(T ), and its faces by F (T ).

A radius assignment on a polyhedral metric M is a map r : V (M) → R+.
For brevity we write ri for r(vi).

A generalized convex polyhedron is a gluing of metric tetrahedra with a com-
mon apex O. The generalized convex polyhedron P = (M,T, r) is determined
by the polyhedral metric M and triangulation T giving its bases and the radius
assignment r for the side lengths.

Write κi
∆= 2π −

∑
jk ∠vjOvivk for the curvature about Ovi, and φij

∆=
∠viOvj for the angle between vertices vi, vj seen from the apex.

Our algorithm, following the construction in [2], will choose a radius as-
signment for the M in question and iteratively adjust it until the associated
generalized convex polyhedron P fits nearly isometrically in R3. The resulting
radii will give an ε-accurate ε-convex embedding of M into R3.

In the argument we will require several geometric objects related to general-
ized convex polyhedra.

Definition 4. A Euclidean simplicial complex is a metric space on a simplicial
complex where the metric restricted to each cell is Euclidean.

A generalized convex polygon is a Euclidean simplicial 2-complex homeomor-
phic to a disk, where all triangles have a common vertex V , the total angle at V
is no more than 2π, and the total angle at each other vertex is no more than π.



Given a generalized convex polyhedron P = (M,T, r), the corresponding
generalized convex dual polyhedron D(P ) is a certain Euclidean simplicial 3-
complex. Let O be a vertex called the apex, Ai a vertex with OAi = hi

∆= 1/ri

for each i.
For each edge vivj ∈ E(T ) bounding triangles vivjvk and vjvivl, construct

two simplices OAiAjilAijk, OAjAijkAjil in D(P ) as follows. Embed the two
tetrahedra Ovivjvk, Ovjvivl in R3. For each i′ ∈ {i, j, k, l}, place Ai′ along ray
Ovi′ at distance hi′ , and draw a perpendicular plane Pi′ through the ray at Ai′ .
Let Aijk, Ajil be the intersection of the planes Pi, Pj , Pk and Pj , Pi, Pl respec-
tively.

Now identify the vertices Aijk, Ajki, Akij for each triangle vivjvk ∈ F (T ) to
produce the Euclidean simplicial 3-complex D(P ). Since the six simplices pro-
duced about each of these vertices Aijk are all defined by the same three planes
Pi, Pj , Pk with the same relative configuration in R3, the total dihedral angle
about each OAijk is 2π. On the other hand, the total dihedral angle about OAi

is 2π − κi, and the face about Ai is a generalized convex polygon of defect κi.

The Jacobian bound in Section 4 makes use of certain multilinear forms
described in [2] and in the full paper [8].

Definition 5. The dual volume vol(h) is the volume of the generalized convex
dual polyhedron D(P ), a cubic form in the dual altitudes h. The mixed volume
vol(·, ·, ·) is the associated symmetric trilinear form.

Let Ei be the area of the face around Ai in D(P ), a quadratic form in the
altitudes within this face. The ith mixed area Ei(·, ·) is the associated symmetric
bilinear form.

Let πi be the linear map πi(h)j
∆= hj−hi cos φij

sin φij
. so that πi(h) = g(i). Then

define Fi(a, b) ∆= Ei(πi(a), πi(b)) so that Fi(h, h) is the area of face i.

By elementary geometry vol(h, h, h) = 1
3

∑
i hiFi(h, h), so that by a simple

computation vol(a, b, c) = 1
3

∑
i aiFi(b, c).

2.2 Weighted Delaunay triangulations

The triangulations we require at each step of the computation are the weighted
Delaunay triangulations used in the construction of [2]. We give a simpler defi-
nition inspired by Definition 14 of [7].

Definition 6. The power πv(p) of a point p against a vertex v in a polyhedral
metric M with a radius assigment r is pv2 − r(v)2.

The center C(vivjvk) of a triangle vivjvk ∈ T (M) when embedded in R2

is the unique point p such that πvi(p) = πvj (p) = πvk
(p), which exists by the

radical axis theorem from classical geometry. The quantity πvi(p) = π(vivjvk) is
the power of the triangle.

A triangulation T of a polyhedral metric M with radius assignment r
is locally convex at edge vivj with neighboring triangles vivjvk, vjvivl if



πvl
(C(vivjvk)) > πvl

(vk) and πvk
(C(vjvivl)) > πvk

(vl) when vivjvk, vjvivl are
embedded together in R2.

A weighted Delaunay triangulation for a radius assignment r on a polyhedral
metric M is a triangulation T that is locally convex at every edge.

A weighted Delaunay triangulation can be computed in time O(n2 log n) by
a simple modification of the continuous Dijkstra algorithm of [10]. The original
analysis of this algorithm assumes that each edge of the input triangulation is
a shortest path. In the full paper [8] we show that the same algorithm works
in time O(Sε−1

8 n2 log n) in the general case. Therefore we perform the general
computation once at the outset, and use the resulting triangulation as the basis
for subsequent runs of the continuous Dijkstra algorithm in time O(n2 log n)
each.

The radius assignment r and triangulation T admit a tetrahedron Ovivjvk

just if the power of vivjvk is negative, and the squared altitude of O in this
tetrahedron is −π(vivjvk). The edge vivj is convex when the two neighboring
tetrahedra are embedded in R3 just if it is locally convex in the triangulation as in
Definition 6. A weighted Delaunay triangulation with negative powers therefore
gives a valid generalized convex polyhedron if the curvatures κi are positive.
For each new radius assignment r in the computation of Section 3 we therefore
compute the weighted Delaunay triangulation and proceed with the resulting
generalized convex polyhedron, in which Lemma 11 guarantees a positive altitude
and the choices in the computation guarantee positive curvatures.

2.3 Notation for bounds

Definition 7. Let the following bounds be observed:

1. n is the number of vertices on M .
2. ε1

∆= mini δi is the minimum defect.
3. ε2

∆= mini(δi − κi) is the minimum defect-curvature gap.
4. ε3

∆= minij∈E(T ) φij is the minimum angle between radii.

5. ε4
∆= maxi κi is the maximum curvature.

6. ε5
∆= minvivjvk∈F (T ) ∠vivjvk is the smallest angle in the triangulation. Ob-

serve that obtuse angles are also bounded: ∠vivjvk < π − ∠vjvivk ≤ π − ε5.
7. ε6 is used for the desired accuracy in embedding M .
8. ε7

∆= (maxi
κi

δi
)/(mini

κi

δi
) − 1 is the extent to which the ratio among the κi

varies from that among the δi. We will keep ε7 < ε8/4π throughout.
9. ε8

∆= mini(2π − δi) is the minimum angle around a vertex.
10. ε9 is used for the desired approximation to convexity in embedding M .
11. D is the diameter of M .
12. L is the maximum length of any edge in the input triangulation.
13. ` is the shortest distance vivj between vertices.

14. S
∆= max(D,L)/` is the maximum ratio of distances.



15. d0
∆= minp∈M Op is the minimum height of the apex off of any point on M .

16. d1
∆= minvivj∈E(T ) d(O, vivj) is the minimum distance to any edge of T .

17. d2
∆= mini ri is the minimum distance from the apex to any vertex of M .

18. H
∆= 1/d0; the name is justified by hi = 1/ri ≤ 1/d0.

19. R
∆= maxi ri, so 1/H ≤ ri ≤ R for all i.

20. T
∆= HR is the maximum ratio of radii.

Of these bounds, n, ε1, ε8, and S are fundamental to the given metric M or
the form in which it is presented as input, and D,L, and ` are dimensionful
parameters of the same metric input. The values ε6 and ε9 define the objective
to be achieved, and our computation will drive ε4 toward zero while maintain-
ing ε2 large and ε7 small. In Section 6 we bound the remaining parameters
ε3, ε5, R, d0, d1, and d2 in terms of these.

Definition 8. Let J denote the Jacobian
(

∂κi

∂rj

)
ij
, and H the Hessian(

∂κi

∂rj∂rk

)
ijk

.

3 Main Theorem

In this section, we prove our main theorem using the results proved in the remain-
ing sections. The algorithm of Theorem 1 obtains an approximate embedding of
the polyhedral metric M in R3. Its main subroutine is described by the following
theorem:

Theorem 2. Given a polyhedral metric M with n vertices, ratio S (the spread)
between the diameter and the smallest distance between vertices, and defect at
least ε1 and at most 2π−ε8 at each vertex, a radius assignment r for M with max-
imum curvature at most ε can be found in time O

(
n913/2S831/(ε121ε445

1 ε616
8 )

)
.

Proof. Let a good assignment be a radius assignment r that satisfies two bounds:
ε7 < ε8/4π so that Lemmas 9–11 apply and r therefore by the discussion in
Subsection 2.2 produces a valid generalized convex polyhedron for M , and ε2 =
Ω(ε2

1ε
3
8/n2S2) on which our other bounds rely. By Lemma 6, there exists a

good assignment r0. We will iteratively adjust r0 through a sequence rt of good
assignments to arrive at an assignment rN with maximum curvature εN

4 < ε as
required. At each step we recompute T as a weighted Delaunay triangulation
according to Subsection 2.2.

Given a good assignment r = rn, we will compute another good assignment
r′ = rn+1 with ε4 − ε′4 = Ω

(
ε445
1 ε121

4 ε616
8 /(n907/2S831)

)
. It follows that from r0

we can arrive at a satisfactory rN with N = O
(
(n907/2S831)/(ε121ε445

1 ε616
8 )

)
.

To do this, let J be the Jacobian (∂κi

∂rj
)ij and H the Hessian

(
∂κi

∂rj∂rk

)
ijk

,
evaluated at r. The goodness conditions and the objective are all in terms of κ,
so we choose a desired new curvature vector κ∗ in κ-space and apply the inverse
Jacobian to get a new radius assignment r′ = r + J−1(κ∗ − κ) in r-space. The



actual new curvature vector κ′ differs from κ∗ by an error at most 1
2 |H||r

′−r|2 ≤(
1
2 |H||J

−1|2
)
|κ∗ − κ|2, quadratic in the desired change in curvatures with a

coefficient

C
∆=

1
2
|H||J−1|2 = O

(
n3/2S14

ε3
5

R23

D14d3
0d

8
1

(
n7/2T 2

ε2ε3
3ε4

R

)2
)

= O

(
n905/2S831

ε443
1 ε121

4 ε616
8

)
by Theorems 3 and 4 and Lemmas 7, 6, 11, and 8.

Therefore pick a step size p, and choose κ∗ according to κ∗i − κi = −pκi −
p
(
κi − δi minj

κj

δj

)
. The first term diminishes all the curvatures together to

reduce ε4, and the second rebalances them to keep the ratios κj

δj
nearly equal

so that ε7 remains small. In the full paper [8] we show that the resulting actual
curvatures κ′ make r′ a good assignment and put ε′4 ≤ ε4 − pε4/2, so long as

p ≤ ε2
1/64π2nε4C. (1)

This produces a good radius assignment r′ in which ε4 has declined by at least

pε4

2
=

ε2
1

128π2nC
= Ω

(
ε445
1 ε121

4 ε616
8

n907/2S831

)
as required.

As a simplification, we need not compute p exactly according to (1). Rather,
we choose the step size pt at each step, trying first pt−1 (with p0 an arbitrary
constant) and computing the actual curvature error |κ′−κ∗|. If the error exceeds
its maximum acceptable value pε2

1ε4/16π2 then we halve pt and try step t again,
and if it falls below half this value then we double pt for the next round. Since
we double at most once per step and halve at most once per doubling plus a
logarithmic number of times to reach an acceptable p, this doubling and halving
costs only a constant factor. Even more important than the resulting simplifica-
tion of the algorithm, this technique holds out the hope of actual performance
exceeding the proven bounds.

Now each of the N iterations of the computation go as follows. Compute the
weighted Delaunay triangulation T t for rt in time O(n2 log n) as described in
Subsection 2.2. Compute the Jacobian Jt in time O(n2) using formulas (14, 15)
in [2]. Choose a step size pt, possibly adjusting it, as discussed above. Finally,
take the resulting r′ as rt+1 and continue. The computation of κ∗ to check pt runs
in linear time, and that of r′ in time O(nω) where ω < 3 is the time exponent of
matrix multiplication. Each iteration therefore costs time O(n3), and the whole
computation costs time O(n3N) as claimed. ut

Now with our radius assignment r for M and the resulting generalized convex
polyhedron P with curvatures all near zero, it remains to approximately embed
P and therefore M in R3. To begin, we observe that this is easy to do given
exact values for r and in a model with exact computation: after triangulating, P
is made up of rigid tetrahedra and we embed one tetrahedron arbitrarily, then
embed each neighboring tetrahedron in turn.



In a realistic model, we compute only with bounded precision, and in any
case Theorem 2 gives us only curvatures near zero, not equal to zero. Lemma 1
produces an embedding in this case, settling for less than exact isometry and
exact convexity.

Lemma 1. There is an algorithm that, given a radius assignment r for which
the corresponding curvatures κi are all less than ε = O

(
min(ε6/nS, ε9ε

2
1/nS6)

)
for some constant factor, produces explicitly by vertex coordinates in time
O(n2 log n) an ε6-accurate ε9-convex embedding of M .

Proof (sketch). As in the exact case, triangulate M , embed one tetrahedron
arbitrarily, and then embed its neighbors successively. The positive curvature
will force gaps between the tetrahedra. Then replace the several copies of each
vertex by their centroid, so that the tetrahedra are distorted but leave no gaps.
This is the desired embedding. The proofs of ε6-accuracy and ε9-convexity are
straightforward and left to the full paper [8].

A weighted Delaunay triangulation takes time O(n2 log n) as discussed in
Subsection 2.2, and the remaining steps take time O(n). ut

We now have all the pieces to prove our main theorem.

Proof (Theorem 1). Let ε
∆= O

(
min(ε6/nS, ε9ε

2
1/nS6)

)
, and apply the algorithm

of Theorem 2 to obtain in time O
(
n913/2S831/(ε121ε445

1 ε616
8 )

)
a radius assign-

ment r for M with maximum curvature ε4 ≤ ε.
Now apply the algorithm of Lemma 1 to obtain in time O(n2 log n) the desired

embedding and complete the computation. ut

4 Bounding the Jacobian

Theorem 3. The Jacobian J =
(

∂κi

∂rj

)
ij

has inverse pseudopolynomially bounded

by |J−1| = O
(

n7/2T 2

ε2ε3
3ε4

R
)
.

Proof. Our argument parallels that of Corollary 2 in [2], which concludes that
the same Jacobian is nondegenerate. Theorem 4 of [2] shows that this Jacobian
equals the Hessian of the volume of the dual D(P ). The meat of the corollary’s
proof is in Theorem 5 of [2], which begins by equating this Hessian to the bilinear
form 6 vol(h, ·, ·) derived from the mixed volume we defined in Definition 5. So
we have to bound the inverse of this bilinear form.

To do this it suffices to show that the form vol(h, x, ·) has norm at least
Ω
( ε2ε3

3ε4

n7/2T 2
|x|
R

)
for all vectors x. Equivalently, suppose some x has |vol(h, x, z)| ≤

|z| for all z; we show |x| = O
(

n7/2T 2

ε2ε3
3ε4

R
)
.

To do this we follow the proof in Theorem 5 of [2] that the same form
vol(h, x, ·) is nonzero for x nonzero. Throughout the argument we work in terms
of the dual D(P ).



Recall that for each i, πix is defined as the vector {xij}j . It suffices to show
that for all i

|πix|22 = O

(
n3T 3

ε2
2ε3ε4

R2 +
n2T 2

ε2ε3ε4
R|x|1

)
since then by Lemma 2

|x|22 ≤
4n

ε2
3

max
i
|πix|22 = O

(
n4T 3

ε2
2ε

3
3ε4

R2 +
n3T 2

ε2ε3
3ε4

R|x|1
)

,

and since |x|1 ≤
√

n|x|2 and X2 ≤ a + bX implies X ≤
√

a + b, |x|2 =
O
(

n7/2T 2

ε2ε3
3ε4

R
)

. Therefore fix an arbitrary i, let g = πih and y = πix, and we
proceed to bound |y|2.

We break the space on which Ei acts into the 1-dimensional positive
eigenspace of Ei and its (k−1)-dimensional negative eigenspace, since by Lemma
3.4 of [2] the signature of Ei is (1, k − 1), where k is the number of neighbors
of vi. Write λ+ for the positive eigenvalue and −E−

i for the restriction to the
negative eigenspace so that E−

i is positive definite, and decompose g = g+ + g−,
y = y+ + y− by projection into these subspaces. Then we have

G
∆= Ei(g, g) = λ+g2

+ − E−
i (g−, g−) ∆= λ+g2

+ −G−

Ei(g, y) = λ+g+y+ − E−
i (g−, y−)

Y
∆= Ei(y, y) = λ+y2

+ − E−
i (y−, y−) ∆= λ+y2

+ − Y−

and our task is to obtain an upper bound on Y− = E−
i (y−, y−), which will

translate through our bound on the eigenvalues of Ei away from zero into the
desired bound on |y|.

We begin by obtaining bounds on |Ei(g, y)|, G−, G, and Y . Since |z| ≥
|vol(h, x, z)| for all z and vol(h, x, z) =

∑
j zjFj(h, x), we have |Ei(g, y)| =

|Fi(h, x)| ≤ 1. Further, det
(

Ei(g, g) Ei(y, g)
Ei(g, y) Ei(y, y)

)
< 0 because Ei has signature (1, 1)

restricted to the (y, g) plane, so by Lemma 3 Y = Ei(y, y) < R2

ε2
.

Now by further calculation and the use of Lemma 4, the theorem follows; the
details are left to the full paper [8] for brevity. ut

Three small lemmas used above follow from the geometry of spherical poly-
gons and of generalized convex dual polyhedra. Their proofs are left to the full
paper [8] for brevity.

Lemma 2. |x|2 ≤ (4n/ε2
3) maxi |πix|2.

Lemma 3. Fi(h, h) > ε2/R2.

Lemma 4. The inverse of the form Ei is bounded by |E−1
i | = O(n/ε4).



5 Bounding the Hessian

In order to control the error in each step of our computation, we need to keep
the Jacobian J along the whole step close to the value it started at, on which
the step was based. To do this we bound the Hessian H when the triangulation
is fixed, and we show that the Jacobian does not change discontinuously when
changing radii force a new triangulation.

Each curvature κi is of the form 2π−
∑

j,k:vivjvk∈T ∠vjOvivk, so in analyzing
its derivatives we focus on the dihedral angles ∠vjOvivk. When the tetrahedron
Ovivjvk is embedded in R3, the angle ∠vjOvivk is determined by elementary
geometry as a smooth function of the distances among O, vi, vj , vk. For a given
triangulation T this makes κ a smooth function of r. Our first lemma shows that
no error is introduced at the transitions where the triangulation T (r) changes.

Lemma 5. The Jacobian J =
(

∂κi

∂rj

)
ij

is continuous at the boundary between
radii corresponding to one triangulation and to another.

Proof (sketch). The proof, which can be found in the full paper [8], uses elemen-
tary geometry to compare the figures determined by two triangulations near a
radius assignment on their boundary. ut

It now remains to control the change in J as r changes within any particular
triangulation, which we do by bounding the Hessian.

Theorem 4. The Hessian H =
(

∂κi

∂rj∂rk

)
ijk

is bounded in norm by

O
(
n5/2S14R23/(ε3

5d
3
0d

8
1D

14)
)
.

Proof. By direct computation and computer algebra. See the full paper [8] for
the details. ut

6 Intermediate Bounds

Here we bound miscellaneous parameters in the computation in terms of the
fundamental parameters n, S, ε1, ε8 and the computation-driving parameter ε4.

Lemma 6. Given a polyhedral metric space M , there exists a radius assignment
r with curvature skew ε7 < ε8/4π, maximum radius R = O(nD/ε1ε8), and
minimum defect-curvature gap ε2 = Ω(ε2

1ε
3
8/n2S2).

Proof (sketch). Take ri = R for all i, with R sufficiently large. Then each κi

is nearly equal to δi, so that ε7 is small. For the quantitative bounds and a
complete proof, see the full paper [8]. ut

Two bounds on angles can be proven by elementary geometry; details are
left to the full paper [8] for brevity.

Lemma 7. ε3 > `d1/R2.



Lemma 8. ε5 > ε2/6S.

Finally we bound O away from the surface M . The bounds are effective
versions of Lemmas 4.8, 4.6, and 4.5 respectively of [2], and the proofs, left for
brevity to the full paper [8], are similar but more involved.

Recall that d2 is the minimum distance from O to any vertex of M , d1 is the
minimum distance to any edge of T , and d is the minimum distance from O to
any point of M .

Lemma 9. d2 = Ω
(
Dε1ε4ε

2
5ε8/(nS4)

)
.

Lemma 10. d1 = Ω
(
Dε2

1ε
4
4ε

6
5ε

2
8/(n2S10)

)
.

Lemma 11. d0 = Ω
(
Dε4

1ε
9
4ε

12
5 ε4

8/(n4S22)
)
.
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